3.217 \(\int \frac{(a+b x^3+c x^6)^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=139 \[ -\frac{a \sqrt{a+b x^3+c x^6} F_1\left (-\frac{1}{3};-\frac{3}{2},-\frac{3}{2};\frac{2}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )}{x \sqrt{\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^3}{\sqrt{b^2-4 a c}+b}+1}} \]

[Out]

-((a*Sqrt[a + b*x^3 + c*x^6]*AppellF1[-1/3, -3/2, -3/2, 2/3, (-2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^3)/(b
 + Sqrt[b^2 - 4*a*c])])/(x*Sqrt[1 + (2*c*x^3)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^3)/(b + Sqrt[b^2 - 4*a*
c])]))

________________________________________________________________________________________

Rubi [A]  time = 0.128221, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {1385, 510} \[ -\frac{a \sqrt{a+b x^3+c x^6} F_1\left (-\frac{1}{3};-\frac{3}{2},-\frac{3}{2};\frac{2}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )}{x \sqrt{\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^3}{\sqrt{b^2-4 a c}+b}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^3 + c*x^6)^(3/2)/x^2,x]

[Out]

-((a*Sqrt[a + b*x^3 + c*x^6]*AppellF1[-1/3, -3/2, -3/2, 2/3, (-2*c*x^3)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^3)/(b
 + Sqrt[b^2 - 4*a*c])])/(x*Sqrt[1 + (2*c*x^3)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^3)/(b + Sqrt[b^2 - 4*a*
c])]))

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
 b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{\left (a+b x^3+c x^6\right )^{3/2}}{x^2} \, dx &=\frac{\left (a \sqrt{a+b x^3+c x^6}\right ) \int \frac{\left (1+\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}\right )^{3/2} \left (1+\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )^{3/2}}{x^2} \, dx}{\sqrt{1+\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}}}\\ &=-\frac{a \sqrt{a+b x^3+c x^6} F_1\left (-\frac{1}{3};-\frac{3}{2},-\frac{3}{2};\frac{2}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )}{x \sqrt{1+\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}}}\\ \end{align*}

Mathematica [B]  time = 0.513515, size = 379, normalized size = 2.73 \[ \frac{10 \left (-80 a^2-61 a b x^3-70 a c x^6+19 b^2 x^6+29 b c x^9+10 c^2 x^{12}\right )+27 x^6 \left (20 a c+b^2\right ) \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^3}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^3}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{5}{3};\frac{1}{2},\frac{1}{2};\frac{8}{3};-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}},\frac{2 c x^3}{\sqrt{b^2-4 a c}-b}\right )+810 a b x^3 \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^3}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^3}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{2}{3};\frac{1}{2},\frac{1}{2};\frac{5}{3};-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}},\frac{2 c x^3}{\sqrt{b^2-4 a c}-b}\right )}{800 x \sqrt{a+b x^3+c x^6}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^3 + c*x^6)^(3/2)/x^2,x]

[Out]

(10*(-80*a^2 - 61*a*b*x^3 + 19*b^2*x^6 - 70*a*c*x^6 + 29*b*c*x^9 + 10*c^2*x^12) + 810*a*b*x^3*Sqrt[(b - Sqrt[b
^2 - 4*a*c] + 2*c*x^3)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^3)/(b + Sqrt[b^2 - 4*a*c])
]*AppellF1[2/3, 1/2, 1/2, 5/3, (-2*c*x^3)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^3)/(-b + Sqrt[b^2 - 4*a*c])] + 27*(b
^2 + 20*a*c)*x^6*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^3)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] +
 2*c*x^3)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[5/3, 1/2, 1/2, 8/3, (-2*c*x^3)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^3)/
(-b + Sqrt[b^2 - 4*a*c])])/(800*x*Sqrt[a + b*x^3 + c*x^6])

________________________________________________________________________________________

Maple [F]  time = 0.031, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{2}} \left ( c{x}^{6}+b{x}^{3}+a \right ) ^{{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^6+b*x^3+a)^(3/2)/x^2,x)

[Out]

int((c*x^6+b*x^3+a)^(3/2)/x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{6} + b x^{3} + a\right )}^{\frac{3}{2}}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^6+b*x^3+a)^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate((c*x^6 + b*x^3 + a)^(3/2)/x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (c x^{6} + b x^{3} + a\right )}^{\frac{3}{2}}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^6+b*x^3+a)^(3/2)/x^2,x, algorithm="fricas")

[Out]

integral((c*x^6 + b*x^3 + a)^(3/2)/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{3} + c x^{6}\right )^{\frac{3}{2}}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**6+b*x**3+a)**(3/2)/x**2,x)

[Out]

Integral((a + b*x**3 + c*x**6)**(3/2)/x**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{6} + b x^{3} + a\right )}^{\frac{3}{2}}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^6+b*x^3+a)^(3/2)/x^2,x, algorithm="giac")

[Out]

integrate((c*x^6 + b*x^3 + a)^(3/2)/x^2, x)